Presente Valor de Diferentes Tipos de Ligações Usando o Excel

Excel Função CONT.SE Como contar valores de texto e números células linhas colunas Somases (Novembro 2024)

Excel Função CONT.SE Como contar valores de texto e números células linhas colunas Somases (Novembro 2024)
Presente Valor de Diferentes Tipos de Ligações Usando o Excel
Anonim

Uma obrigação é um tipo de contrato de empréstimo entre um emissor (o vendedor do vínculo) e um detentor (o comprador de uma obrigação). O emitente é essencialmente emprestado e, portanto, incorre em uma dívida que deve ser reembolsada "valor nominal" inteiramente no vencimento i. e. quando o contrato termina. Enquanto isso, o detentor desta dívida recebe pagamentos de juros (cupons) com base no fluxo de caixa determinado por uma fórmula de renda. Do ponto de vista do emissor, esses pagamentos em dinheiro fazem parte do custo do empréstimo, enquanto do ponto de vista do titular, é um benefício que vem com a compra de uma obrigação. (Leia mais em: Bond Basics).

Para determinar o valor de uma obrigação hoje - para um principal fixo (valor nominal) a ser reembolsado no futuro em qualquer momento predeterminado - podemos usar uma planilha do Excel.

O valor presente (PV) de uma obrigação representa a soma de todo o fluxo de caixa futuro desse contrato até que venha com um reembolso total do valor nominal.

O preço de depósito limpo de uma obrigação não inclui os juros acumulados até o vencimento que cada cupom pago ganharia até o vencimento.
O preço do vínculo sujo de uma obrigação no entanto, inclui os juros acumulados no vencimento que cada cupom pago ganharia até o vencimento.

Valor da obrigação = Soma do Valor presente (PV) dos pagamentos de juros + (PV) do pagamento principal

Vamos discutir o cálculo do valor atual de um Obrigatório para

A) A Zero Coupon Bond

B) A Bond com anuidades anuais

C) A Bond com anuidades bi-anuais

D) A Bond with Continuous Compounding

E) Preços de obrigações sujas

A. A Zero Coupon Bond

A Zero Coupon Bond não entrega qualquer pagamento de cupão durante a vida da obrigação, mas vende com desconto pelo valor nominal da obrigação.

Exemplo 1: Zero Coupon Bonds

Um vínculo com vencimento em 20 anos com valor nominal de US $ 1000, sem incorrer em juros, é conhecido como Zero-Coupon Bond. Por exemplo, neste caso, o valor do vínculo diminuiu após a emissão, deixando-o ser comprado hoje com uma taxa de desconto no mercado de 5%. Aqui está um passo fácil para encontrar o valor de tal vínculo com a ajuda do Microsoft Excel.

Aqui, "taxa" corresponde à taxa de juros que será aplicada ao valor nominal do vínculo.

"Nper" é o número de períodos em que a ligação é composta. Uma vez que temos um Zero Coupon Bond com vencimento em 20 anos, temos 20 períodos.

"Pmt" é o valor do cupom que será pago por cada período. Aqui temos 0.

"Fv" representa o valor nominal do vínculo a ser reembolsado na sua totalidade na data de vencimento.

B. Um vínculo com anuidades

Exemplo 2: Obrigações com pagamentos de cupom anual

Empresa 1 emite uma obrigação com o principal de US $ 1000 a taxa de 2.5% ao ano, com prazo de vencimento de 20 anos e uma taxa de desconto de 4%.
O título fornece cupons anualmente e paga um valor do Cupão de 0. 025 * 1000 = $ 25

Observe aqui que "Pmt" = $ 25 na Caixa de Argumentos de Função.
O valor presente de tal vínculo resulta em uma saída do comprador do vínculo de - $ 796. 14 Portanto, esse vínculo custou US $ 796. 14

C. Um vínculo com anuidades bianuais

Exemplo 3: Obrigações com fluxo de caixa de cupons bi-anual

Empresa 1 emite uma obrigação com o principal $ 1000 a taxa de 2. 5% anual com vencimento 20 anos e um desconto taxa de 4%.
O título fornece cupons anualmente e paga um valor de cupom de 0. 025 * 1000/2 = $ 25/2 = $ 12. 5

A taxa de cupom semestral é de 1. 25% (= 2. 5% ÷ 2)

Observe aqui na Caixa de Argumentos de Função que "Pmt" = $ 12. 50 e "nper" = 40, pois há 40 períodos de 6 meses dentro de 20 anos. O valor presente de tal vínculo resulta em uma saída do comprador do vínculo de - $ 794. 83. Portanto, esse vínculo custa US $ 794. 83.

D. A Bond with Continuous Compounding

Exemplo 5: Ligação com composição contínua

O Composto Contínuo refere-se a uma composição constante. Como vimos acima, podemos ter compostos que se baseiam em uma base anual, bi-anual ou qualquer número discreto de períodos que gostaríamos. No entanto, a composição contínua tem um número infinito de períodos de composição que refletem uma composição constante. O fluxo de caixa é descontado pelo fator exponencial.

F). Preços de obrigações sujas

Exemplo 6: Preços das obrigações sujas

O preço limpo de uma obrigação é o preço que não inclui os juros acumulados. Este é o preço de uma obrigação recém-emitida no mercado primário. Quando uma Obrigações muda de mãos no mercado secundário, seu valor deve refletir os juros acumulados anteriormente desde o último pagamento do cupom. Isso é referido como o preço sujo da obrigação,

Preço sujo da obrigação = Juros acumulados + Preço limpo O valor presente líquido dos fluxos de caixa de um título adicionado aos juros acumulados fornece o valor do preço sujo. O juro acumulado = (Taxa de Cupão * dias decorridos desde o último Cupão pago) / Período do dia do cupom

i) A Companhia 1 emite uma obrigação com o principal de US $ 1000 por taxa de 5% anual com vencimento de 20 anos e uma taxa de desconto de 4%. ii) O cupom é pago semestralmente: 1º de janeiro e 1º de julho. iii) O vínculo é vendido por US $ 100, 30 de abril de 2011 iv) Desde o último cupom emitido, houve 119 dias de juros acumulados. Assim, o Participação acumulada = 5 * (119 / (365/2)) = 3. 2603

Bottom Line

Excel fornece uma fórmula muito útil para preços de títulos. A função PV é flexível o suficiente para fornecer o preço de títulos sem anuidades, ou com diferentes tipos de rendas; como anual ou bi-anual.